ZTF; self-calibration; long-period planets

I spent today at Caltech, where I spoke about self-calibration. Prior to that I had many interesting conversations. From Anna Ho (Caltech) I learned that ZTF is going to image 15,000 square degrees per night. That is life-changing! I argued that they should position their fields to facilitate self-calibration, which might break some ideas they might have about image differencing.

With Nadia Blagorodnova (Caltech) I discussed calibration of the SED Machine, which is designed to do rapid low-resolution follow-up of ZTF and LSST events. They are using dome and twilight flats (something I said is a bad idea in my colloquium) and indeed they can see that they are deficient or inaccurate. We discussed how to take steps towards self-calibration.

With Heather Knutson (Caltech) I discussed long-period planets. She is following up (with radial velocity measurements) the discoveries that Foreman-Mackey and I (and others) made in the Kepler data. She doesn't clearly agree with our finding that there are something like 2 planets per star (!) at long periods, but of course her radial-velocity work has different sensitivity to planets. We discussed the possibility of using radial-velocity surveys to do planet populations work; she believes it is possible (something I have denied previously, on the grounds of unrecorded human decision-making in the observing strategies).

In my talk I made some fairly aggressive statements about Euclid's observing strategies and calibration. That got me some valuable feedback, including some hope that they will modify their strategies before launch. The things I want can be set or modified at the 13th hour!

No comments:

Post a Comment