gravitational clustering, gravitational interferometry

Today Michael Joyce (LPNHE) gave a great talk about analytic and conceptual directions towards understanding nonlinear gravitational growth of structure in the Universe. He focused on the stable-clustering approximation, which dates back to Peebles, is very predictive over a range of scales, and can be used to test simulations. At lunch afterwards, we discussed the great importance of studying gravity analytically, a point made often and well by Roman Scoccimarro (NYU).

Prior to the seminar, Ellie Schwab-Abrams (AMNH) and I discussed self-calibration for pulsar timing arrays, which we think and hope could lead to a new era of gravitational interferometry and enormously increase the sensitivity to long-term gravitational-wave signals. We decided to start by solving the radio-astronomy problem, which has yet to be solved in the literature, because no radio telescope has the problem that the relative velocities of it's elements are unknown!

No comments:

Post a Comment