finding the dark matter with streams

Today was a cold-stream science day. Ana Bonaca (Harvard) computed derivatives today of stream properties with respect to a few gravitational-potential parameters, holding the present-day position and orientation of the stream fixed. This permits computation of the Cramér-Rao bound on any inference or estimate of those parameters. We sketched out some ideas about what a paper along these lines would look like. We can identify the most valuable streams, the streams most sensitive to particular potential parameters, the best combinations of streams to fit simultaneously, and the best new measurements to make of existing streams.

Separately from this, I had a phone conversation with Adrian Price-Whelan (Princeton) about the point of doing stream-fitting. It is clear (from Bonaca's work) that fitting streams in toy potentials is giving us way-under-estimated error bars. This means that we have to add a lot more potential flexibility to get more accurate results. We debated the value of things like basis-function expansions, given that these are still in the regime of toy (but highly parameterized toy) models. We are currently agnostic about whether stream fitting is really going to reveal the detailed properties of the Milky Way's dark-matter halo. That is, for example, the properties that might lead to changes in what we think is the dark-matter particle.

No comments:

Post a Comment