similarities of stars; getting started in data science

I met with Keith Hawkins (Columbia) in the morning, to discuss how to find stellar pairs in spectroscopy. I fundamentally advocated chi-squared difference, but with some modifications, like masking things we don't care about, removing trends on length-scales (think: continuum) that we don't care about, and so on. I noted that there are things to do that are somewhat better than chi-squared difference, that relate to either hypothesis testing or else parameter estimation. I promised him a note about this, and I also owe the same to Melissa Ness (MPIA), who has similar issues but in chemical-abundance (rather than purely spectral) space. Late in the day I worked on this problem over a beer. I think there is a very nice solution, but it involves (as so many things like this do) a non-trivial completion of a square.

In the afternoon, I met with my undergrad-and-masters research group. Everyone is learning how to install software, and how to plot spectra, light curves, and rectangular data. We talked about projects with the Boyajian Star, and also with exoplanets in 1:1 resonances (!).

1 comment:

  1. 3d bioprinting = Immortality = go to stars