MJ Vakili (NYU) showed me today what he has been working on to generate a data-driven prior probability distribution over galaxies. It is great work. He finds that he can do a shapelet decomposition, truncate it, and then do a dimensionality reduction (again, as it were), and then fit the resulting distribution of components with a mixture of Gaussians. We have yet to show that the model is good, but when he samples from it, the samples look like actual galaxies. The point is this: If you want to measure a shear map (or anything else, for that matter) from galaxy images, you can't do proper inference if you don't have a prior over galaxy images. So we are playing around with the possibility of making one.
In the brown-bag today, Craig Lage (NYU) showed detailed simulations he is doing of the "Bullet Cluster". He is doing by-hand likelihood optimization, with an hours-long simulation inside the loop! But the results are gorgeous: He can reproduce all the large-scale features, and a lot of the small-scale details. He says it isn't a challenge to CDM, but it is a challenge to theories in which there is no dark matter. One of his goals is to test dark-matter interactions; it looks very promising for that.
"We have yet to show that the model is good, but when he samples from it, the samples look like actual galaxies."
ReplyDeleteFantastic work!
"He is doing by-hand likelihood optimization, with an hours-long simulation inside the loop!"
ReplyDeleteSomehow I missed this the first time. This is crazy, in the best possible way.