2018-09-21

stream-as-torus; TESS FFIs

I met up early with Price-Whelan (Princeton) to work on the chemical-tangents method papers. This work devolved into rearranging and organizing into categories the to-do list, using GitHub's project tools. That was useful! But it felt a bit like we didn't get anything done. I know that isn't true!

A bit later in the morning we called Jo Bovy (Toronto) to get some advice for Lauren Anderson (Flatiron) on fitting streams in the Milky Way halo. I had been summarizing one of Bovy's papers as saying that streams are close to orbits (that is, you can fit a stream as an orbit) but Bovy corrected us: His paper shows that streams are close to tori. That is, you can expect all the stars in the stream to have similar actions or invariants, but they will not line up as a line on the torus the same way that a single segment of a single orbit would. Duh! That makes good sense and suggests a beautifully simple method for modeling streams with tilted torus sections. I think I almost know how we might do that.

I also checked in with the group working on NASA TESS full-frame images (FFIs), led by Ben Montet (Chicago), who have been hacking at Flatiron all week. They intend to reformat the full-frame images into manageable (and more useful) data objects, extract aperture photometry flexibly, and perform best-in-class de-trending using other stars or other pixels, in the spirit of many things we have done over the years with Kepler data. They really look like a team that might take over the world! For context: The TESS Mission plans to release the raw FFIs with no proprietary period, and they plan to leave it to the community to build open-source (or not!) data-analysis tools around them. Go team!

No comments:

Post a Comment