Today was day 3 of Machine Learning for Science: Bridging Data-driven and Mechanistic Modeling at Schloss Dagstuhl.
We had an open discussion about goals for ML in science today. The idea of explainability came up. I liked the comment that explainability (or what counts as explainability) might depend incredibly strongly on field or context. Like it is different in medicine and in astronomy. And, related, the idea of how models are communicated is very context dependent. And maybe very dependent on history. For example, in the future, models might be communicated through APIs rather than scientific papers maybe?
Causation and causal inference was a big theme of the day with Bernhard Schölkopf, Jonas Peters, Bubacar Bah, and Niki Kilbertus all talking about overlapping ideas in causal inference, mechanism inference, differential equation inference, and symbolic regression. Is causation the new framework for machine learning? Many in the room think so.
No comments:
Post a Comment