2019-01-07

expected future-discounted discovery rate

My tiny bit of research today was on observation scheduling: I read a new paper by Bellm et al about scheduling wide-field imaging observations for ZTF and LSST. It does a good job of talking about the issues but it doesn't meet my (particular, constrained) needs, in part because Bellm et al are (sensibly) scheduling full nights of observations (that is, not going just-in-time with the scheduling), and they have separate optimizations for volume searched and slew overheads. However, it is highly relevant to what I have been doing. It also had lots of great references that I didn't know about! They also make a strong case for optimizing full nights rather than going just-in-time. I agree that this is better, provided that your conditions aren't changing under you. If they are changing under you, you can't really plan ahead. Interesting set of issues, and something that differentiates imaging-survey scheduling from spectroscopic follow-up scheduling.

I also did some work comparing expected information gain to expected discovery rate. One issue with information gain is that if it isn't information gain in this exposure (and it isn't, because we have to look ahead), then it is hard to write down the information gain, because it depends strongly on future decisions (for example, if we decide to stop observing the source entirely!). So I am leaning towards making my first contribution on this subject be about discovery rate.

Expected future-discounted discovery rate, that is.

No comments:

Post a Comment