2023-09-05

teeny tiny cosmological simulations.

Connor Hainje (NYU) is looking at this paper by Chen et al which uses a machine-learning regression to interpolate between cosmological simulation outputs at different cosmological epochs. To build an end-to-end pipeline for testing ideas, he has been running 32-cubed cosmological simulations. These might be the smallest simulations run since the 1980s! But, interestingly, he is finding that the interpolation isn't working great. Is this because it is harder to train a regression on a small simulation than it is on a large simulation? Is a small simulation less predictable or less interpolate-able? It's expensive to find out!

No comments:

Post a Comment